skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lukas, Andre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We study a class of supersymmetric Froggatt-Nielsen (FN) models with multiple U(1) symmetries and Standard Model (SM) singlets inspired by heterotic string compactifications on Calabi-Yau threefolds. The string-theoretic origin imposes a particular charge pattern on the SM fields and FN singlets, dividing the latter into perturbative and non-perturbative types. Employing systematic and heuristic search strategies, such as genetic algorithms, we identify charge assignments and singlet VEVs that replicate the observed mass and mixing hierarchies in the quark sector, and subsequently refine the Yukawa matrix coefficients to accurately match the observed values for the Higgs VEV, the quark and charged lepton masses and the CKM matrix. This bottom-up approach complements top-down string constructions and our results demonstrate that string FN models possess a sufficiently rich structure to account for flavour physics. On the other hand, the limited number of distinct viable charge patterns identified here indicates that flavour physics imposes tight constraints on string theory models, adding new constraints on particle spectra that are essential for achieving a realistic phenomenology. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  2. A bstract Calabi-Yau threefolds with infinitely many flops to isomorphic manifolds have an extended Kähler cone made up from an infinite number of individual Kähler cones. These cones are related by reflection symmetries across flop walls. We study the implications of this cone structure for mirror symmetry, by considering the instanton part of the prepotential in Calabi-Yau threefolds. We show that such isomorphic flops across facets of the Kähler cone boundary give rise to symmetry groups isomorphic to Coxeter groups. In the dual Mori cone, non-flopping curve classes that are identified under these groups have the same Gopakumar-Vafa invariants. This leads to instanton prepotentials invariant under Coxeter groups, which we make manifest by introducing appropriate invariant functions. For some cases, these functions can be expressed in terms of theta functions whose appearance can be linked to an elliptic fibration structure of the Calabi-Yau manifold. 
    more » « less
  3. He, Yang-Hui; Ge, Mo-Lin; Bai, Cheng-Ming; Bao Jiakang; Hirst, Edward (Ed.)
    Vector bundle cohomology represents a key ingredient for string phenomenology, being associated with the massless spectrum arising in string compactifications on smooth compact manifolds. Although standard algorithmic techniques exist for performing cohomology calculations, they are laborious and ill-suited for scanning over large sets of string compactifications to find those most relevant to particle physics. In this article we review some recent progress in deriving closed-form expressions for line bundle cohomology and discuss some applications to string phenomenology. 
    more » « less
  4. null (Ed.)
    A bstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines. 
    more » « less